
Planworks: A Debugging Environment for
Constraint Based Planning Systems

Patrick Daleg * and Jeremy Frank and Michael Iatauro and Conor McGann 5 and WiIl Taylor
Computational Sciences Dibision

NASA Arnes Research Center. MS 269-3
frank@ email. arc. nasa. gov
Moffett Field, CA 94035

. -

Introduction
Numerous planning and scheduling systems employ under-
lying constraint reasoning systems. Debugging such sys-
tems involves the search for errors in model rules, constraint
LbLLJv111113 (116VI~L11L11J, sea,,, l l b u L l ~ : i ~ ~ and the p i ~ b l e m in-
stance (initial state and goals). In order to effectively find
such problems, users must see why each state or action is in
a plan by tracking causal chains back to part of the initial
problem instance. They must be able to visualize complex
relationships among many different entities and distinguish
between those entities easily. For example, a variable can be'
in the scopc of several constraints, as well as part of a state
or activity in a plan; the activity can arise as a consequence
of another activity and a model rule. Finally, they must be
able to track each logical inference made during planning.

We have developed PZunWorkr, a comprehensive sys-
tem for debugging constraint-based planning and schedul-
ing systems. Planworks assumes a strong transaction model
of the entire planning process, including adding and remov-
ing parts of the constraint network, variable assignment, and
constraint propagation. A planner logs all transactions to
a relational database that is tailored to support queries for

of specialized views to display different forms of data (e.g.
constraints, activities, resources, and causal links). Each
view allows user customization in order to display only the
most relevant information. Inter-view navigation features al-
low users to rapidly exchange views to examine the trace of
the process from different perspectives. Trunsuction quey
mechanisms allow users access to the logged transactions to
visualize activities across the entire planning process.

Planworks is implemented in Java and employs a MySQL
relational database back-end. Planworks can be used either
online while planning is performed, or offline after captur-
ing the entire planning process. Furthermore, Planworks is
an open system allowing for extensions to the transaction
model to capture new planner algorithms, different classes
of entity (e.g. complex resource classes) or novel heuris-
tics. Planworks has been used to visualize logs generated by

- n o n n m ; - ~ 9lnnAth-r -nh ha,,-: '

a of compoiieiits. 17:--.-r:---:-.- -------- C^ - - - - : - r
Y L A uuLiLuiiuri L U I I I ~ U I I G I I L > LUIIX> L

*Authors listed in alphabetical order.
?De Anza College
'QSS
SQSS

three different planners. PlanWorks was specifically devel-
oped for the Extensible Universal Remote Operations Plan-
ning Architecture (EUROPA;?) developed at NASA, but the
underlying principles behind Planworks make it useful for
many constraint-based planning systems.

The paper is organized as fol1,ows. We first describe some
fundamentals of EUROPA2. We then describe Planworks'
principal components. We then discuss each component in
detail, and then describe inter-component navigation fea-
tures. We close with a discussion of how PlanWorks is used
to find model flaws.

EUROPA2
EUROPA2 provides efficient, customizable Plan Database
Services that enable the integration of automated planning
into a wide variety of applications. These services are based
on some simple building blocks. Plans are composed of
predicates; each of which has a name, start time, end time,
duration, and a (possibly empty) set of parameters. Each in-
stance of a predicate in a plan is represented by a token, and
each parameter of the predicate is represented by variables.
Predicates are associated with classes that either represent

resources that support possibly concurrent actions that do
not exceed a maximum capacity. Class instances are ob-
jects, and during planning each token is assigned to an ob-
ject in the plan. Domain rules are assertions that if a pred-
icate P is in a plan, then other predicates Q2. must also be
in a plan, and are related to P by constraints among the
variables of the predicates. Domain rules may also assert
that resources are impacted by predicates; resource impacts
are called transactions, and also have variables that repre-
sent them. EUROPA2 does not implement any planning al-
gorithm: rather, it provides services that support different
planning algorithms according to the application.

t i l w o J i m o c thQt c i i ~ p f i tctd!y srdered seque~ces cf StZt5S. 0:
*I.,1-114'.Cd ~..-. _-

A Sample PIanning Domain
To illustrate the fundamentals of Planworks, we use a plan-
ning domain loosely based on a planetary surface robot
named Rover. Rover is a mobile robot that can move from
location to location. A Rover has a battery on board, and can
replenish its energy levels using solar power. Locations are
described as follows:

class Location {
int x; int y;
Location(int 2, int -y) {

x = 2; y = -y;

}

The properties of the Rover are described as follows:
class Rover {

preaicare AtCLocation 1;)
predicate Going{Location from;

Location to;}
Resource battery;
battery = new Battery(l0, 3, 30);

1

is:
A domain rule in EUROPA2 describing rover movement

Rover::Going{
neq(to, from); / / to != from
rneets(object.At aO);
eq(a0.1, to);
met_by(object.At al);
eq(al.1, from);
subgoal(object.battery.transaction tx);
calcConsumption(tx.quantity, from, to);
/ / Consume at the beginning
eq(tx.time, start);

Finally, a problem instance for the Rover is:

Rover spirit = new Rover();
Location rock = new Location(1, 1);
Location hill = new Location(2, 3);
Location lander = new Location(5, 8);
goal(Rover.At A);
eq(A.1, rock); eq(A.object, spirit);
leq(A.start, 0) ; leq(0, A.end);
goal(Rover.At B);

leq(B.start, 0) ; leq(0, B.end);

q<3.:, lander); Eq(B.ObjfCt, --i- i i \ . =pi,. i i , ,

Getting Planworks the Goods
During planning, EUROPAz reads the domain rules to de-
termine if any of them are applicable given the current state
of the plan. If so, new tokens, resource transactions, vari-
ables, and constraints are created, and the domain rule ap-
plication is recorded. As the planner makes decisions, to-
kens can be assigned to timelines, transactions can be as-
signed to resource instances, variables can be assigned, and
constraints can be enforced, leading to reductions in the do-
mains of variables. Each of these activities is logged, and
each entity is assigned a unique key that allows for the track-
ing of entities and their relationships during planning. This
information is passed down to Planworks to enable users to
uncover the relationships between entities in the plan.

Planworks can be used in one of two modes. Planners
can generate logs for Planworks offline, after which Plan-
Works is invoked to view the logs. When planning takes a
long time, this is impractical. Alternatively, Planworks can

be started and provided a pointer to a planner. Planworks
then allows the user to interleave planning and debugging.
The user can run the planner for a fixed number of steps,
investigate, then continue running the planner or terminate
planning.

Planworks Components
Initial Views
Upon startup, Planworks presents users with a menu bar

offering features for project creation and management. A
project contains numerous planning sequences correspond-
ing to the execution of a planner on a problem instance. The
menu allows users to create new projects, add and delete se-
quences, and open a sequence for viewing.

When a sequence is opened for viewing, Planworks dis-
plays two views: the Sequence Step View and the Sequence
Query View. The Sequence Step View, shown in Figure ??,
is a broad overview of the planning process. The view is
presented as an inverted histogram. broken into components
representing the number of variables, constraints and tokens
in the plan. Moving the mouse over a bar of the histogram
shows the step number and number of entities of each type
i n the plan. At a glance, the user sees how the plan’s size
evolved throughout planning, and can see patterns (such as
thrashing in a chronological backtracking algorithm, or local
optimal in a local search planner). An indicator above each
bar of the histogram shows whether the data for that step has
been loaded into Planworks.

The Sequence Query View allows the user to request de-
tailed information about the underlying transactions over the
entire planning sequence. The scope of logging is crucial to
support these queries. Each time an entity is created or de-
stroyed during planning, this information is logged; at cre-
ation time, each entity is given a unique key. These keys
make it possible to track entities over the course of planning.
Constraints can be tracked when they execute, tokens can be
tracked as their state changes (e.g. from creation to insertion
on an object), planner decisions can be tracked, and so on.

Examples of supported transaction queries include entity
creation, assignments and unassignments of tokens to ob-
jects, assignments and unassignments of values to variables,
constraint enforcement, checking for variables with only one
domain value remaining, and more.

The Sequence Step View is also used to launch numer-
ous other views of the plans generated at each step of the
sequence. These views fall into one of three categories:
Plan Views, Entity Relationship Views and Transaction View.
These views are described further below.

Plan Views
Plan Eews are holistic views of the entire plan. Plans are
sequences of states or actions over time, so by their nature,
the Plan Views are meant to convey a sense of what the plan
looks like overall. However, EUROPA2 can represent plans
that are more complex than time-stamped sequences of ac-
tions. Plans can be temporallyflexible; that is, states may
have start times or durations that are unknown until plan ex-
ecution. Further, plans may involve resources whose quan-

tities change over time. Thus, Planworks requires visual
representations of timelines iij ieSGurCeS that are tempera!!?
flexible. For this reason, three distinct Plan Views are pro-
vided.

The Emeline View is designed to sho\v the sequence of
predicates on a timeline. Since tokcns can be unified, the
Timeline View shows the number of unified tokens support-
ing each predicate; moving the mouse over the predicate
shows the keys of the unified tokens and indicates which
of these is the active token. The Timeline View shows the
possible values of the start and end times of each predicate
on the timeline. Finally, the Timeline View shows any free
tokens. This is shown in Figure ??.

The Ternporal.fitent View is designed to show more
temporti1 information about tokens than the Timeline View.
Each token has a series of icons representing the possible
values of the start time (downward pointing triangles), end
time (upward pointing triangles) and duration (horizontal
line bracketed by the triangles). This is shown in Figure ??.
Mevizg the msuse over each of these shows :!?e values, ar?d
an absolute time scale at the bottom is used for reference.
By moving back and forth between the Timeline View and
the Temporal Extent View, users can see how constraints on
individual tokens lead to bounds and orderings on predicates
in timelines. The Temporal Extent View also includes each
resource transaction in the plan. Moving the mouse over the
resource transaction shows the impact that transaction has
on the resource. The Resource Transaction View restricts the
Temporal Extent view so that only the resource transactions
are shown.

The Resource Profile Mew shows the minimum and max-
imum quantities of a resource available as a function of time
stemming from the transactions in the plan. Again, moving
back and forth between the Temporal Extent View (or the
Resource Transaction View) and the Resource Profile View.
users can see how resource transactions lead to bounds on
resource availability.

Entity Relationship Views
EUROPA2 generates a large number of entities during :..z
course of planning. These entities range from individual to-
kens, variables representing their parameters and constraints
on those variables to object instances and domain rule invo-
cation instances. The Entity Relationship Mews are graphi-
cal views that show each of these entities and how they are
related to each other. Under the Help menu, the Shapes op-
tion provides a handy guide to the shape each entity takes on
in these views.

The Navigator View is an entity relationship graph capa-
ble of showing every entity in an individual plan. The Navi-
gator View is launched by selecting an entity from any other
view, and initially shows only a small number of entities and
relationships. Each entity in the Navigator can be "opened"
to show its relationships to other (currently hidden) entities,
and subsequently "closed" to hide those relationships. Enti-
ties that can be closed are outlined in bold, and those that can

Figure 1: Planworks Plan Views. The Timeline View and
Temporal Extent View are shown.

be closed are not. The entity graph is directed; the descrip-
tion of the problem defines the initial set of entities, and all
entities are derived from them via actions taken by the plan-
ner and the rules of the domain. The graph is acyclic, in
that multiple relationships between entities apply. Users can
explore the entities and their relationships and find out how
various parts of a plan are related to each other. They may

The Navigator Window also supports a "Find Entity Path"
feature that discovers paths between entities (whether they
have been opened by the user or not). Navigator View also
supports a "Find by Key" feature that hilights an entity with
the given key. Each Rule Instance entity can be expanded
to show the domain rule text that led to the new token or
transaction, as well as the tokens involved in that part of the
view.

The Token Network Mew restricts the Navigator view to
only tokens, transactions and rule instances. This allows the
user to focus exclusively on the "causal chain" that explains
why particular tokens were generated. The resulting graph
is a directed tree. As with the Navigator View, each Rule
Instance entity can be expanded to show the domain rule text
that led to the new token or transaction, as well as the tokens
involved in that part of the view. This is shown in Figure
??. The Token Network View also supports the same "Find
Entity Path" and "Find by Key" features supported by the
Navigator. Model constants may be the values of variables.

The Constraint Network View restricts the Navigator View
to constraints, variables, tokens, transactions and model con-

A n 0,. I.., h - - A -~,,,all.r n-on;,n n,-,-In~;,n . , c . & n r , ~ nnt;t;ar "" 3v " J 1,011u1 lllllllli L l J vy"""'6 "1 "'"J"'6 .a'."ud V*'rl.'"U.

stants. Initially, the view shows all model constants, predi-
cates, transactions and rules. Model constants may be the
values of variables, and may be complex structures; for ex-
ample, in our simple Rover domain, paths consisting of an
initial location, final location and cost in terms of energy
consumption are constants. Each model constant can be
opened to show its underlying structure. Tokens and transac-
tions are associated with sets of variables. which in turn are
in the scope of constraints. Domain rules may also have "lo-
cal variables" to reduce the number of parameters of pred-
icates. The user can incrementally explore the Constraint
Network by opening tokens, transactions, or rules, and sub-
sequently opening the variables or constraints. The Con-
straint Network View also supports the same "Find Entity
Path" and "Find by Key" features supported by the Naviga-
tor.

-

Flle Project Planning Scqucncc window Plug-In Help

f
---d

0 '

Figure 2: Planworks Token Network View and Rule In-
stance.

Transaction View
EUROPAz was designed to support multiple planning
paradigms, from heuristically driven chronological back-
tracking planners to local searching planners to iterative
sampling planners. Consequently, logging of information
about how the planner makes decisions is the responsibility
of the planner, while logging the consequences of planner
decisions is the responsibility of EUROPA2. The Trans-
action View shows every transaction EUROPA2 performed

this step. This includes checking domain rule applicability,
entity creation and destruction, variable assignment, token
state manipulation, constraint enforcement, and so on.

Navigating Plan Works
An early decision was made in PlanWorks to create sep-
arate Views that contain information that users typically
want grouped. However, PlanWorks contains numerous fea-
tures that allow users to efficiently navigate between Views.
These features allow users of Planworks to rapidly move
from View to View when debugging planning domains and
planners.

Launching Views
Almost all Views can be launched from any other View. The
Navigator View can be launched when the mouse is over an
entity such as a token, variable variable, constraint, constant
or rule in a View (except the Transaction View). All other
views can be launched when the mouse is over the back-
ground of a view.

Tracking Objects by Key
All objects have keys, and every view has a method to search
for entities by key. Furthermore, the Views opened on start-
ing Planworks have facilities for querying transactions by
key. Finally, moving the mouse over entities will reveal the
keys of entities. The entity relationship views can be used to
provide keys used for querying the transaction database. for
example.

Snapping to Entities
Planworks provides additional features to navigate between
Views. An entity can be made active in one view, and the
user can then "Snap to Active Entity" in a second view. This
is especially useful for getting around the entity relationship
views.

Filtering Views
In addition to manually opening and closing entity relation-
ships to incrementally explore views, Planworks provides a
custom filter for each View. This filter allows rapid reduction
of the View to exclude designated predicates, classes (time-
lines or resources), or predicates in particular time ranges.

Overviews
Every View can have an associated Overview window that
shows the view at a maximum zoom. This allows users to
simultaneously examine a small number of related entities
in a View, while also seeing the "Big Picture".

Stepping Forward and Backwards
All Views pertain to one step of the planning sequence. Each
View has buttons that allow the user to advance or retreat the
step the View shows. This permits a primitive "animation"
feature that shows how a View changes during planning. As
the View changes, the,window is updated. Furthermore, the
mouse allows users to either advance or retreat all Views
simultaneously.

Managing Views
All Views are labeled at the top with View name, Project,
Sequence number and Step. Thus, at a glance, a user can au-
tomatically tell what information they are seeing in a View.
In addition, there is a drop-down menu named Window that
allows users to see at a glance what windows are open. as
well as either Tile or Cascade all open windows. Finally, us-
ing the mouse, users may automatically close, hide or open
all Views.

Debugging in PlanWorks
We present two small examples of how PlaGWorks can be
used to find bugs in EUROPA2.

Missing Model Rule
Suppose that the rule governing rover movement was miss-
ing a part:

Rover::Going{
neq(to, f r o m) ; / / to != from
meets(object.At aO);
eq(a0.1, to);
met-by missing

1
The resulting plan could then have two consecutive

Rover: :Going tokens; this would appear in the Timeline View
From here, the user could proceed in several ways. One op-
tion is to launch the Token Network View and see that only
one Rover: :At results as a subgoal from Rover: :Going. Upon
opening the Rule Instance View, the user would see the rule
text and the context in which the rule was invoked, and be
able to revise the rule. Alternatively, the user could launch
the Navigator View and discover the problem.

The Wrong Constraint
As another example, supposer that the user used the wrong
constraiilt LI a i-ule:

Rover::Going{
eq(to, f r o m) ; / / to=fi-urn?silly!
... }

In this case, the user might see an unexpectedly very long
plan, which would appear in the Timeline View. Again, there
are several candidate debugging scenarios. One option is
for the user to open the Navigator View, and observe that
Rover: :Going begets Rover: :At ad-infinitum. Opening a Rule
Instance View on the Rover: :Going, the user might notice the
incorrect use of the eq constraint. Another possibility is that
the user immediately suspects a problem with constraint rea-
soning, and opens the Constraint Network View. After find-
ing the key of a parameter of a Rover: :Going, the user then
can check the transactions enforced on this variable using
the Transaction View. Upon realizing that no neq constraints
are enforced, the user can then check the Rule Instance View,
and realize that the wrong constraint was used in the rule.

Figure 3: Planworks Constraint Network View and Trans-
action View.

Conclusions and Future Work
We have described Planworks, a system designed to de-
bug planning domains and planners. While Planworks
was designed to debug planners built on top of the
EUROPA2 system, it can be used by any planner that obeys
a small number of rules about how to log its inner workings.
Planworks was built largely with COTS technology, and has
been fielded on Mac OSX 10.2 and 10.3. Linux and Soiaris.

Planworks was originally conceived of as an Inte-
grated Development Environment for building and manag-
ing projects with EUROPA:! . In the near future, Planworks
will be extended to handle visual model building, visualizing
plan execution and associated constraint reasoning. Further-
more. EUROPA2 is designed to support many different plan-
ning algorithms. We will also extend PlanWorks to enable
user customization to visualize different planner algorithms
and heuristics.

Acknowledgements
The authors would like to acknowledge Andrew Bach-
mann’s contributions to the NDDL language used to de-
scribe EUROPA2 planning domains, Tania Bedrax Weissfor
her ongoing work on EUROPA2, Sailesh Ramakrishnan for
his contributions as Planworks’ prototype user, and Bob
KanefsLy for the Potato prototype that ultimately evolved
into Planworks. This project was funded by the NASA In-
telligent Systems Program.

